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Numerical methods are discussed for computing the pressure inside a two- or three-
dimensional inviscid bubble with negligible density suspended in Stokes flow, subject
to a specified rate of expansion. In the case of flow past a solitary two- or three-
dimensional bubble, the bubble pressure is found by solving an integral equation of
the first kind for the normal derivative of the pressure on the side of the liquid over the
free surface, while requiring that the pressure field decays at a rate that is faster than
the potential due to a point source. In another approach, an explicit expression for
the bubble pressure is derived by applying the reciprocal theorem for the flow around
the bubble and the flow due to a point source situated inside the bubble. In the case
of flow past, or due to the expansion or shrinkage of, a periodic lattice of bubbles, the
bubble pressure is found by solving an integral equation of the second kind for the
density of an interfacial distribution of point-source dipoles, while ensuring existence
and uniqueness of solution by spectrum deflation. The new methods considerably
simplify the computation of the bubble pressure by circumventing the evaluation of
the finite part of hypersingular integrals. Results of numerical simulations illustrate
the pressure developing inside a solitary two- and three-dimensional incompressible
bubble suspended in simple shear flow, and the pressure developing inside a doubly
periodic array of gaseous inclusions representing shrinking pores trapped in a sintered
medium.

1. Introduction
In a recent paper, the author discussed the pressure developing inside a solitary

two-dimensional incompressible bubble suspended in Stokes flow, and the expansion
or shrinkage of a compressible bubble whose area changes arbitrarily or as a function
of the bubble pressure according to a specified equation of state (Pozrikidis 2001a).
Results of numerical computations showed that the pressure inside a two-dimensional
incompressible bubble that is suddenly subjected to pure elongational or simple shear
flow increases, passes through a maximum, and finally decreases toward an asymptotic
value as the bubble approaches the steady state. The asymptotic value was in excellent
agreement with Richardson’s (1968) analytical predictions for the bubble pressure at
steady state. Correspondingly, the area of a compressible bubble occupied by a gas
that obeys the usual equation of state of the form pB A

λ
B = f(T ) decreases, passes

through a minimum, and then increases toward an asymptotic value as the bubble
approaches the steady state; pB is the bubble pressure, AB is the bubble area, λ
is a positive exponent, and f(T ) is a function of temperature. Crowdy (2003a)
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independently confirmed these results using the complex-variable formulation of two-
dimensional Stokes flow. In his approach, the problem is conveniently formulated in
terms of a finite set of coupled nonlinear ordinary differential equations, but only for
a certain class of initial shapes.

In the earlier study (Pozrikidis 2001a), the bubble pressure was computed by
evaluating the finite part of hypersingular integrals that arise from the boundary-
integral formulation of Stokes flow. Unfortunately, the extension of this method to
three-dimensional flow past a solitary bubble and to two- or three-dimensional flow
past or due to the expansion or shrinkage of bubbles arranged on a periodic lattice is
cumbersome. The periodic flow is of particular interest in studies of foam expansion
or inclusion shrinkage occurring in the process of sintering (e.g. Pozrikidis 2002a;
Crowdy 2003b). In the case of three-dimensional flow, the evaluation of hypersingular
integrals requires strong smoothness conditions that disqualify the usage of general-
purpose boundary-element methods for interfacial flow. In the case of periodic flow,
the boundary-integral formulation for the pressure is frustrated by unwieldy pressure
kernels associated with the periodic stresslet.

These difficulties have motivated the reconsideration of the problem of computing
the bubble pressure in Stokes flow with the goal of developing a numerical method
that is applicable to general flow configurations. The new approach hinges on the
realization that the pressure field in Stokes flow satisfies Laplace’s equation, and may
thus be described using either Green’s third identity or a generalized representation
involving an interfacial distribution of point-source dipoles. An additional distinguish-
ing condition that allows the computation of the pressure must be imposed according
to the particular flow configuration, and it emerges by requiring that the integral
equations obtained from the integral representation admit a unique and properly
behaving solution. A second approach uses the reciprocal theorem for Stokes flow
applied to the particular flow of interest and the flow due to a point source situated
inside the bubble to derive an explicit expression for the bubble.

In this paper, the development and implementation of the new methodology is
demonstrated for three prototypical flows. In § 2, we consider the pressure developing
inside a two-dimensional solitary bubble in simple shear flow and confirm that the
results are in agreement with those obtained using the earlier method. In § 3, we
consider the pressure developing inside a three-dimensional solitary bubble in shear
flow and find similarities with the case of two-dimensional flow. In § 4, we consider
the pressure developing inside a doubly periodic array of shrinking two-dimensional
bubbles. Straightforward extensions of these fundamental case studies allow us to
tackle arbitrary configurations of two- and three-dimensional Stokes flow.

2. Computation of the bubble pressure in two-dimensional flow
Consider simple shear flow past a solitary two-dimensional inviscid bubble with

negligible density in the limit of vanishing Reynolds number, as illustrated in fig-
ure 1(a). The gas–liquid interface is assumed to be a free surface with uniform surface
tension γ. The hydrodynamic traction along the free surface on the side of the liquid
is given by

f ≡ σ · n = (−pB + γκ)n, (2.1)

where σ is the Newtonian stress tensor, n is the unit vector normal to the free surface
pointing into the liquid, pB is the bubble pressure, and κ is the curvature of the free
surface in the (x, y)-plane; for a circular bubble of radius a, κ = 1/a. Decomposing
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Figure 1. Illustration of simple shear flow along the x-axis past (a) a two-dimensional and
(b) a three-dimensional bubble.

the normal stress into its pressure and viscous components, and using the continuity
equation to express the viscous component in terms of the tangential derivative of
the velocity projected onto the tangential vector along the bubble surface, we obtain

p = pB − 2µ
∂u

∂l
· t − γκ, (2.2)

where t is the unit vector tangent to the free surface pointing in the direction of
increasing arc length l.

2.1. Green’s third identity for the pressure

Recall now that the pressure in Stokes flow is a harmonic function, and use Green’s
third identity to express the pressure at the point x0 that lies in the liquid in the
integral form

p(x0) = p∞ −
∫
C

GL(x, x0)
∂p(x)

∂n
dl(x) +

∫
C

p(x)[n(x) · ∇GL(x, x0)] dl(x), (2.3)

where ∂p/∂n ≡ n(x) · ∇p(x) is the normal derivative of the pressure, C is the free
surface, p∞ is the pressure at infinity, GL(x, x0) = −(1/2π) ln r/c is the free-space
Green’s function of Laplace’s equation in two dimensions, r ≡ |x − x0|, and c is
an arbitrary positive constant with dimensions of length. Taking the limit of (2.3)
as the evaluation point x0 approaches the free surface, expressing the limit of the
double-layer potential in terms of its principal value, substituting the right-hand side
of (2.2) for the free-surface pressure, and rearranging, we find∫

C

GL(x, x0)
∂p(x)

∂n
dl(x)+pB = p∞+ 1

2
q(x0)−

∫ PV

C

q(x)[n(x) ·∇GL(x, x0)] dl(x), (2.4)

where PV denotes the principal-value integral, and we have defined p = pB − q and

q(x) ≡ 2µ

(
∂u

∂l
· t
)

(x) + γκ(x). (2.5)

Given the instantaneous bubble shape and tangential velocity along the free sur-
face, (2.4) provides us with an integral equation of the first kind for the normal
derivative of the pressure. The bubble pressure on the left-hand side of (2.4) is an
unknown that must be computed as part of the solution by introducing a scalar
constraint.
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Alternatively, we may use the integral formulation of Stokes flow to express the
pressure in terms of the interfacial traction and velocity in the form

p(x0) = p∞ − 1

4π

∫
C

fi(x)Pi(x0, x) dl(x) +
µ

4π

∫
C

ui(x)Πik(x0, x)nk(x) dl(x), (2.6)

where the kernels Pi and Πik are the pressure fields associated with the point force
and the stresslet. For flow in free space, these are given by

Pi(x0, x) = −2
∂ ln r

∂x̂i
= −2

x̂i

r2
, (2.7a)

Πik(x0, x) = −4
∂2 ln r

∂x̂i∂x̂k
= −4

(
δik

r2
− 2

x̂ix̂k

r4

)
, (2.7b)

where x̂ = x − x0 and r = |x̂|. Taking the limit of (2.6) as the evaluation point x0

approaches the free surface, and manipulating the emerging ‘hypersingular’ integrals
by subtracting the strong singularities of the kernels (Pozrikidis 2001a), we find that
the pressure on the side of the liquid is given by the regularized integral representation

p(x0) = p∞ +
γ

2π

∫
C

ni(x)
xi − x0i

r2
[κ(x)− κ(x0)] dl(x)

+
2µ

π

∫
C

[ui(x)− ui(x0)]
x̂ix̂k

r4
nk(x) dl(x)

− µ
π

∫ PV

C

[ui(x)− ui(x0)]
ni(x)

r2
dl(x)− µ

(
∂ui

∂l

)
(x0)ti(x0), (2.8)

where x0 lies on the free surface C . The first two integrals on the right-hand side
of (2.8) are non-singular, whereas the third is a Cauchy principal-value integral.
Pozrikidis (2001a) used the integral representation (2.8) in conjunction with the
interfacial condition (2.2) to evaluate the liquid pressure and the bubble pressure at
marker points distributed along the free surface, and then averaged the pointwise
results to eliminate numerical oscillations and improve the accuracy.

The representation (2.6) shows that, far from the free surface, the pressure behaves
like

p(x0) ' p∞ − Pi(x0, xc)
1

4π

∫
C

fi(x) dl(x) + O

(
1

r2

)
, (2.9)

where xc is a designated bubble centre. Because the force exerted on the bubble
vanishes, as required by the equilibrium equation (2.1), the integral on the right-
hand side of (2.9) is zero, and the disturbance pressure field decays like 1/r2. This
observation provides us with a condition for the computation of pB in conjunction
with the integral equation (2.4), ∫

C

∂p(x)

∂n
dl(x) = 0, (2.10)

which ensures that the pressure field decays faster than the potential due to a point
source. The main advantage of this approach is that the computation of the bubble
pressure requires the evaluation of weakly singular and non-singular principal-value
integrals. In contrast, the last three terms of the right-hand side of (2.8) define the
‘finite part’ or ‘Hadamard value’ of a hypersingular integral. The advantage of the
present formulation is marginal in the case of two-dimensional flow past a solitary
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bubble discussed in this section, but significant in the case of three-dimensional flow
and periodic two- or three-dimensional flow discussed in §§ 3 and 4.

It is known that the solution of the integral equation of the first kind (2.4)
for ∂p/∂n with the free-space Green’s function is unique only when the transfinite
radius of the contour C is not equal to the constant c involved in the definition
of the Green’s function (Yan & Sloan 1988) – the transfinite radius of a circle is
equal to its radius. If this condition is not satisfied, any particular solution can be
modified with the addition of an arbitrary constant. The integral constraint (2.10)
removes this freedom and renders the solution unique for any free-surface shape and
size.

A standard boundary-element collocation method was implemented for solving
the integral equation (2.4) accompanied by (2.10). The function q defined in (2.5)
and the normal derivative of the pressure were approximated with linear functions
over the boundary elements, and the system of linear equations was solved by Gauss
elimination. The method was applied to compute the evolution of the pressure
inside an incompressible bubble deforming under the action of a simple shear flow,
u∞ = (ky, 0), where k is the shear rate, for a broad range of capillary numbers
Ca = µka/γ, where a is the radius of the circular bubble. The results were in excellent
agreement with those obtained by the previous method (Pozrikidis 2001a), as well
as with Richardson’s (1968) analytical predictions for the bubble pressure at steady
state. New results include the distribution of the normal derivative of the pressure
along the bubble surface during the evolution.

Richardson (1968) showed that steady elliptical bubble shapes exist for any capil-
lary number. The higher the capillary number, that is the higher the shear rate,
the larger the aspect ratio and the smaller the inclination of the deformed bubble
with respect to the direction of the unperturbed shear flow. Figure 2(a, b) shows
stages in the deformation of an incompressible bubble from the circular initial shape
for Ca = 0.10 and 0.50, at times kt = 0, 0.25, 0.5, 0.75. 1.0 and 5.0, computed
using the boundary-element method discussed by Pozrikidis (2001a). Figure 2(c, d )
shows the corresponding distributions of the dimensionless normal derivative of the
pressure χ ≡ a(∂p/∂n)/(kµ), plotted against the polar angle θ measured around
the bubble centre; the sinusoidal lines correspond to the initial circular shape. The
results show that the normal derivative of the pressure, proportional to the tangen-
tial derivative of the vorticity, develops a sharp peak at the tip of the deformed
bubble.

Figure 3 shows the evolution of the reduced bubble pressure, defined as δp̂B ≡
(pB − p∞ − γ/a)/(µk), for Ca = 0.10, 0.3 and 0.5. The solid lines were produced by
solving the integral equation (2.4), and the dotted lines were produced by evaluating
the pressure at the interfacial nodes using the strongly singular integral representation
(2.6), and then computing the average to eliminate numerical oscillation. The good
agreement confirms the consistency of the present approach.

2.2. The reciprocal theorem with a point source

The velocity field due to a two-dimensional point source of unit strength placed at
the point xs is given by usi = x̂i/(2πr

2) = −Pi/(4π), where x̂ = x− xs, r ≡ |x̂|, and the
vector Pi is defined in (2.7a). This irrotational field satisfies the equations of Stokes
flow with an associated uniform pressure which, for convenience and without loss
of generality, can be set equal to zero. The corresponding stress field is given by
σsij = −µΠij/(4π), where the tensor Πij is defined in (2.7b).

Placing the singular point xs inside the bubble, and applying the reciprocal theorem
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Figure 2. (a, b) Stages in the deformation of an incompressible bubble for (a) Ca = 0.10 and
(b) 0.50, at times kt = 0, 0.25, 0.5, 0.75. 1.0, and 5.0. (c, d ) Corresponding distributions of the
reduced normal derivative of the pressure χ plotted against the polar angle θ measured around the
bubble centre; the sinusoidal lines correspond to the initial circular shape.
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Figure 3. Reduced pressure developing inside a two-dimensional incompressible bubble, δp̂B ≡
(pB − p∞ − γ/a)/(µk), for Ca = 0.1, 0.3, and 0.5 (highest curve). The solid lines were generated by
solving the integral equation (2.4), the dotted lines were generated by evaluating the pressure at the
interfacial nodes using the strongly singular integral representation (2.6), and the dashed lines were
generated by evaluating the right-hand side of (2.13).
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for the Stokes flow past the bubble and the flow due to the point source, we find∫
C

ui(x)σsik(x̂)nk(x) dl(x) =

∫
C

usi (x̂)σik(x)nk(x) dl(x) + p∞, (2.11)

where C is the bubble contour. The pressure at infinity arises from the limiting value
of the integral shown on the right-hand side (2.11) computed over a large contour
enclosing the bubble; the corresponding integral shown on the left-hand side vanishes.
Replacing the free-surface traction with the right-hand side of (2.1) and rearranging,
we obtain an explicit expression for the bubble pressure,

pB = p∞ + γ

∫
C

usi (x̂)ni(x)κ(x) dl(x)−
∫
C

ui(x)σsik(x̂)nk(x) dl(x), (2.12)

which can be recast into the form

pB = p∞ − γ

4π

∫
C

Pi(x̂)ni(x)κ(x) dl(x) +
µ

4π

∫
C

ui(x)Πik(x̂)nk(x) dl(x). (2.13)

In the case of a circular bubble suspended in a quiescent ambient fluid, equation
(2.13) produces the expected result pB = p∞+ γκ. More generally, once the interfacial
velocity is available, the integrals on the right-hand side of (2.13) can be computed
by standard numerical methods.

Working in a similar fashion, we find that, if the point source is placed inside the
liquid, the reciprocal theorem applied for the point source leads us to the integral
representation (2.6) stated earlier on the basis of the integral representation for the
velocity. In this sense, (2.13) is a natural companion of (2.6).

The dashed lines in figure 3 were produced by evaluating the right-hand side of
(2.13) with the point source located at the bubble centre. The results show that this
method of evaluating the bubble pressure is somewhat more accurate than the other
two methods, although the accuracy does depend on the precise location of the point
source.

2.3. Evolution of a compressible bubble

In practical applications, the bubble pressure is either specified in absolute terms or
related to the bubble volume and temperature by means of an equation of state. In
these cases, the rate of bubble expansion, Q, is an unknown that must be found as
part of the solution. Pozrikidis (2001a) implemented a method of computing Q based
on the observation that, in Stokes flow, Q is linear function of the bubble pressure.

An alternative method would be to supplement the equations of Stokes flow with
the integral constraint (2.13). In the implementation of the boundary-integral method,
this constraint is expressed in the form of the scalar linear functional F(pB, u) = 0,
and the term F(pB, u)v(x) is added to the integral equation of the second kind for the
interfacial velocity, where v(x) is an arbitrary vector function that is non-orthogonal
to the normal vector n, that is,

∫
C
vini dl 6= 0; a simple choice is v = n. Straightforward

analysis shows that the solution of the modified integral equation will satisfy the
requisite constraint (2.13).

3. Computation of the bubble pressure in three-dimensional flow
The new formulation is especially useful in the case of three-dimensional flow past

a solitary bubble illustrated in figure 1(b), where the evaluation of hypersingular
integrals associated with the integral representation for the pressure is extremely
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sensitive to the discretization error. Repeating the analysis of § 2 with straightforward
changes in notation, we derive the counterpart of the integral equation (2.4) originating
from Green’s third identity∫

D

GL(x, x0)
∂p(x)

∂n
dS(x)+pB = p∞+ 1

2
q(x0)−

∫ PV

D

q(x)[n(x) · ∇GL(x, x0)] dS(x), (3.1)

where D is the bubble surface, GL(x, x0) = 1/(4πr), is the free-space Green’s function
of Laplace’s equation in three dimensions, r ≡ |x−x0|, and PV denotes the principal-
value integral. The surface function q is defined as

q(x) ≡ 2µ θS + 2γκm(x), (3.2)

where κm is the mean curvature,

θS ≡ Trace[P · (∇u) · P] (3.3)

is the rate of surface dilatation, P = I − nn is the tangential projection operator, and
I is the unit matrix. If ξ and η comprise a pair of surface curvilinear coordinates
with associated surface metric hS , then θS may be expressed in the computationally
convenient form

θS =
1

hs
n ·
(
∂u

∂ξ
× ∂x

∂η
+
∂x

∂ξ
× ∂u

∂η

)
. (3.4)

Alternatively, we may use the integral formulation of Stokes flow to express the
pressure in terms of the interfacial velocity in the form

p(x0) = p∞ − 1

8π

∫
D

fi(x)Pi(x0, x) dS(x) +
µ

8π

∫
D

ui(x)Πik(x0, x)nk(x) dS(x), (3.5)

where the kernels Pi and Πik are the pressure fields associated with the three-
dimensional point force and stresslet. For infinite flow in free space, these are given
by

Pi(x0, x) = 2
∂

∂x̂i

(
1

r

)
= −2

x̂j

r3
, (3.6a)

Πik(x0, x) = −4
∂2

∂xi∂xk

(
1

r

)
= −4

(
δik

r3
− 3

x̂ix̂k

r5

)
. (3.6b)

Taking the limit of the integral representation (3.5) as the evaluation point x0

approaches the free surface produces unwieldy ‘hypersingular’ integrals.
The representation (3.5) requires that the normal derivative of the pressure satisfy

the counterpart of the integral constraint (2.10)∫
D

∂p(x)

∂n
dS(x) = 0, (3.7)

which serves as a distinguishing condition for the computation of the bubble pressure.
Although a rigorous proof is not available, lack of evidence to the contrary sug-

gests that the integral equation of the first kind for ∂p/∂n with the free-space Green’s
function shown in (3.1) has a unique solution, in contrast to its two-dimensional coun-
terpart (e.g. Nédélec & Planchard 1973). This important difference can be attributed,
in part, to the positiveness of the three-dimensional Green’s function of Laplace’s
equation. In contrast, the two-dimensional Green’s function is positive when r > c
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and negative otherwise, where c is the constant length involved in the definition of
the Green’s function.

The counterpart of the integral representation (2.13) is

pB = p∞ − γ

4π

∫
D

Pi(x̂)ni(x)κm(x) dS(x) +
µ

8π

∫
D

ui(x)Πik(x̂)nk(x) dS(x), (3.8)

where x̂ ≡ x− xs, and the singular point xs is located inside the bubble. The integrals
on the right-hand side of (3.8) may be computed by standard numerical methods.

A standard boundary-element collocation method was implemented for computing
the evolution of the bubble and solving the integral equation (3.1) subject to the
integral constraint (3.7) (e.g. Pozrikidis 2001c). In the numerical implementation, the
bubble surface was discretized into an unstructured surface grid of six-node triangular
elements generated from the successive subdivisions of a regular octahedron, and all
surface functions were approximated with quadratic functions with respect to the
local triangle coordinates (e.g. Pozrikidis 2002b). The influence matrix associated with
the single-layer harmonic potential on the left-hand side of (3.1) was generated by
the method of impulses, and the linear system resulting from node collocation was
solved by Gauss elimination. For the finest discretization considered, involving 512
elements and 1026 interfacial nodes, each evaluation of the bubble pressure requires
approximately 10 minutes of CPU time on an INTEL 1.7 GHz processor running
Linux.

Figure 4 shows the evolution of the excess pressure developing inside an incom-
pressible bubble subjected to a impulsively started simple shear flow, for a low
and a moderate capillary number Ca ≡ µka/γ = 0.2 and 0.5; a is the radius of the
spherical bubble. The simulation ended when the computation could no longer be
continued with adequate accuracy due to significant grid distortion. The symbols
in figure 4 represent results obtained using the numerical method discussed in the
previous paragraph, and the solid lines represent results obtained by evaluating the
right-hand side of (3.8) with the point source located at the bubble centre. For both
capillary numbers, the bubble deforms and reaches a steady state at long times.
The numerical error in the computation of the bubble pressure is estimated to be
on the order of 0.01 µk. Although the numerical accuracy is marginally adequate
and the length of the simulation is limited by the deformation of the surface grid,
figure 4 nevertheless provides compelling evidence that a maximum in the pressure
develops during the evolution, similar to that displayed in figure 3 for two-dimensional
flow.

4. Expansion and shrinkage in two-dimensional doubly periodic flow
Consider now the flow induced by the expansion or shrinkage of a doubly periodic

array of two-dimensional bubbles arranged on a square or hexagonal lattice, as
illustrated in figure 5. The doubly periodic configuration can be regarded as a model
of an ordered expanding foam or an array of shrinking inclusions developing during
the late stages of viscous sintering. In the periodic model, the bubbles are deployed
at the vertices of a two-dimensional lattice defined by the base vectors a(1) and a(2),
as depicted in figure 5. For the square lattice a(1) = [L(t), 0] and a(2) = [0, L(t)], and
for the hexagonal lattice a(1) = [L(t), 0] and a(2) = [ 1

2
L(t), 1

2

√
3L(t)], where L(t) is the

evolving length of the lattice side. In both expansion and shrinkage, the structure of
the lattice is assumed to be preserved, and the pressure field in the liquid is required
to be periodic in the directions of the two base vectors.
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Figure 4. Reduced pressure developing inside a three-dimensional incompressible bubble, δp̂B ≡
(pB − p∞ − 2γ/a)/(µk), for Ca = 0.2 (squares) and 0.5 (circles). The solid lines represent results
obtained by evaluating the right-hand side of (3.8).
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Figure 5. Expansion or shrinkage of a doubly periodic array of two-dimensional bubbles or pores
arranged on (a) a square or (b) a hexagonal lattice, representing an expanding foam or a sintering
material.

4.1. Dipole representation

It is convenient to represent the pressure field in the liquid in terms of an interfacial
distribution of point-source dipoles pointing normal to the free surfaces, amounting
to a double-layer harmonic potential, in the form

p(x0) = p0 −
∫
C

ϕ(x)[n(x) ·D(x− x0)] dl(x), (4.1)

where p0 is the liquid pressure in the absence of fluid motion, C is the contour of
one bubble or pore, ϕ is the a priori unknown strength density of the dipoles, and
D(x− x0) is the harmonic field due to a doubly periodic array of dipoles. One of the
dipoles is located at the point x0 = (x0, y0), and the nth dipole is located at the point
x(n) = (xn, yn), where

x(n) = x0 + ia(1)
x + ja(2)

x , y(n) = y0 + ia(1)
y + ja(2)

y , (4.2)
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i and j are two integers, and the index n is defined in terms of the indices i and j by
double summation.

Using the Ewald summation method, we find that the doubly periodic dipole can
be expressed in the computationally convenient form

Dj(x− x0) =
1

2Ac
(xj − x0j ) +

1

2π

∑
n

xj − x(n)
j

r2
n

exp(−r̂2
n)

+
1

Ac

∑
m

k
(m)
j

k(m)2 exp(− 1
4
k̂(m)2

) sin[k(m) · (x− x0)]. (4.3)

The first sum on the right-hand side of (4.3) with respect to n runs over the dipole
sites in physical space, while the second sum with respect to m runs over the vertices
of the reciprocal lattice in wavenumber space. The base vectors of the reciprocal
lattice are given by

b(1) =
2π

Ac
a(2) × ez, b(2) =

2π

Ac
ez × a(1), (4.4)

where Ac = |a(1) × a(2)| is the area of the unit cell in physical space. The vertices of
the reciprocal lattice are located at k(m) = (k(m)

x , k(m)
y ), where

k(m)
x = ib(1)

x + jb(2)
x , k(m)

y = ib(1)
y + jb(2)

y , (4.5)

i and j are two integers, and the index m is defined in terms of i and j using double
summation. The singular wavenumber corresponding to i = 0 and j = 0 is excluded
from the second sum in (4.3). The rest of the symbols in (4.3) are defined as follows:
rn = |x− xn| is the distance of the evaluation point from the nth dipole, r̂n = ξrn is
the corresponding reduced dimensionless distance, k(m) = |k(m)| is the length of the

mth wavenumber vector, k̂(m) ≡ k(m)/ξ is the reduced length of the mth wavenumber,
and ξ is the Ewald splitting parameter with dimensions of inverse length, determining
the balance of the sums in real and reciprocal space.

It can be shown, and it has been confirmed by numerical evaluation, that the
right-hand side of (4.3) is independent of the selected value of ξ. As ξ tends to zero,
we obtain a representation in terms of sums of real-space dipoles, whereas as ξ tends
to infinity, we obtain a representation in terms of a double Fourier series in reciprocal
wavenumber space. Both are added to a field that increases linearly in the direction
of the dipoles, independent of the lattice geometry. This linear field was designed
carefully so that the dipole vector satisfies the integral identity

∫
C

n(x) ·D(x− x0) dl(x) =


1 when x0 lies inside C

1
2

when x0 lies on C

0 when x0 lies outside C ,

(4.6)

where C is any closed contour in the (x, y)-plane, and the unit normal vector n
points outward from C . When x0 lies on C , the principal value of the integral on the
right-hand side of (4.6) is implied.

Taking the limit of (4.1) as the evaluation point x0 approaches the free surface C ,
expressing the limit of the double-layer integral in terms of its principal value, and
requiring the interfacial condition (2.2), we derive an integral equation of the second
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(a)

(b)

ô = 0

ô = 0

0.43 0.60 0.63

0.39 0.59 0.63

Figure 6. Shapes of bubbles shrinking at constant rate on (a) a square and (b) a hexagonal lattice
for initial capillary number Ca0 = 1.0.

kind for the strength density ϕ

ϕ(x0) = 2

∫ PV

C

ϕ(x)[n(x) ·D(x− x0)] dl(x) + 2[pB − q(x0)− p0], (4.7)

where the function q is defined in (2.5). The integral identity (4.6) implies that the
integral equation (4.7) has either no solution or an infinite number of solutions
that differ by an arbitrary constant. To remove this difficulty, we observe that the
presence of the unspecified bubble pressure on the right-hand side allows us to deflate
the spectrum of the integral operator and solve a perfectly well-posed problem.
Accordingly, and to preserve linearity, we require that the bubble pressure is given by

pB =
β

LC

∫
C

ϕ(x) dl(x), (4.8)

where LC is the arc length of the contour C , and β is a non-zero but otherwise
arbitrary dimensionless constant. Equation (4.7) supplemented with condition (4.8)
may be solved using a standard boundary-element collocation method.

Figure 6(a) shows stages in the shrinkage of a doubly periodic array of initially
circular bubbles arranged on a square lattice, contracting at a constant negative rate
of shrinkage Q = dAB/dt, where AB is the area of one bubble. The bubble shapes
are displayed in the plane of dimensionless axes [x/L(t), y/L(t)], where the length of
the lattice side L(t) decreases appropriately during the evolution. The labels above
the panels show the corresponding dimensionless times τ ≡ L2

0t/|Q|, where L0 is the
initial lattice side. The initial bubble radius is a0 = 0.45L0, and the initial capillary
number is Ca0 ≡ µ|Q|/L0γ = 1. Figure 6(b) shows the corresponding evolution of
bubbles arranged on a hexagonal lattice. The evolution of the free surfaces shown in
figure 6 was computed using the boundary-integral method discussed in the Appendix,
using 128 nodes to trace the evolution of the pore surface. The differential equations
governing the motion of the nodes were advanced in time using the second-order
Runge–Kutta method with a variable time step that is proportional to the perimeter
of the free surface. A complete simulation involving 500 time steps requires several
hours of CPU time.

The results displayed in figure 6 reveal that the bubbles on the square lattice deform
into rhomboidal shapes whose tip curvature continues to increase until a perfectly
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Figure 7. The solid and dashed curves display, respectively, the evolution of the reduced bubble
pressure and minimum radius of curvature for the square lattice. The dotted lines display the
corresponding evolution for the hexagonal lattice.

or nearly cuspidal shape develops, in agreement with the analytical predictions of
Tanveer & Vasconcelos (1995) for solitary bubbles. In contrast, bubbles arranged on a
hexagonal lattice maintain a nearly circular shape during the evolution. The difference
between the two evolutions is attributed to the more pronounced spatial anisotropy
of the square lattice that is responsible for strong deviations from the circular shape.
Tanveer & Vasconcelos (1995) showed that interfacial waves are amplified during
implosion due to shrinkage.

Figure 7 displays the evolution of the reduced bubble pressure δp̂B ≡ (pB − p0)L
2
0/

(µQ) and the corresponding evolution of the minimum radius of curvature reduced
by L0. The pressure inside a contracting solitary circular bubble of radius a can be
computed by elementary analytical methods, and is found to be

pB = p0 +
γ

a
− µQ

πa2
,

where Q = d(πa2)/dt. For the conditions corresponding to figure 6, this formula
predicts that the initial reduced bubble pressure is δp̂B(t = 0) = 0.6503. The numerical
computations show that δp̂B(t = 0) = 0.74145 for the square lattice and 0.67208 for
the hexagonal lattice. These comparisons reveal that periodicity has a significant
effect on the developing bubble pressure. Figure 7 shows that, in agreement with
the analytical predictions for solitary bubbles, the bubble pressure in the periodic
configuration decreases in time and diverges toward negative infinity at the critical
time τc = 0.636 where the bubbles disappear.

Of particular interest is the evolution of a doubly periodic array of pores whose
pressure is specified and the rate of expansion is computed as part of the solution.
In the case of viscous sintering, the bubble pressure is typically assumed to be,
and remain equal to, the equilibrium ambient pressure p0. Figure 8 shows results of
numerical simulations conducted using the first method discussed in § 2.3, for the
square and hexagonal lattice. The initial condition is the same as that described
earlier for the simulations depicted in figure 6. The labels above the frames show
the dimensionless time τ ≡ γt/(µL0), where L0 is the initial lattice side. In this case,
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(a) ô = 0 0.38 0.64 0.84

(b) ô = 0 0.41 0.72 0.85

Figure 8. Evolution of shrinking constant-pressure pores on (a) a square and
(b) a hexagonal lattice.
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Figure 9. Evolution of the liquid fraction during densification due to the shrinkage of con-
stant-pressure pores. The solid and dashed lines correspond, respectively, to the square and hexag-
onal lattice illustrated in figure 8. The circles represent data read off figure 3 of van de Vorst (1995)
for a square lattice with initial liquid fraction 0.35, and the dotted line represents corresponding
results obtained using the present formulation.

the interfaces remain smooth at all times and nearly cuspidal shapes do not develop.
This variation underscores the importance of the rate of shrinkage not only for the
qualitative but also for the qualitative features of the motion. Figure 9 shows the
evolution of the liquid fraction toward the value of unity. The solid line corresponds
to the square lattice, and the dashed line corresponds to the hexagonal lattice.

4.2. Reciprocal theorem with a periodic lattice of point sources

The dipole field defined in (4.3) satisfies the equations

∇ ·D =
∑
n

δ2(x− x(n)), ∇2D = 0, (4.9)
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and may thus be identified with the non-periodic velocity field induced by a doubly
periodic array of point sources with unit strength, denoted by usi = Di; in (4.9), δ2

is Dirac’s delta function in the (x, y) plane. The associated pressure field is uniform
throughout the domain of flow except at the singular points, and the associated stress
field is given by σsij = µΣij , where

Σij(x− x0) =

(
∂Di

∂xj
+
∂Dj

∂xi

)
(x, x0)

=
δij

Ac
+

1

π

∑
n

1

r4
n

[
δijr

2
n − 2(1 + r̂2

n)(xi − x(n)
i )(xj − x(n)

j )
]

exp(−r̂2
n)

+
2

Ac

∑
m

k
(m)
i k

(m)
j

k(m)2 exp(− 1
4
k̂(m)2

) cos[k(m) · (x− x0)]. (4.10)

It is worth noting that the velocity field D is related to the doubly periodic pressure
Green’s function of the two-dimensional Stokes flow, denoted by p, by the equation

pj(x− x0) = 4πDj(x− x0) +
2π

Ac
(xj − x0j ), (4.11)

as discussed in the Appendix.
Working as in § 2.2 for a solitary bubble, we derive an expression for the pore

pressure in terms of integrals along the bubble surface C and contours of a unit
cell I ,

pB = γ

∫
C

Di(x̂)ni(x)κ(x) dl(x)− µ
∫
C

ui(x)Σij(x̂)nj(x) dl(x)

+

∫
I

Di(x̂)σij(x̂)nj(x) dl(x)− µ
∫
I

ui(x)Σij(x̂)nj(x) dl(x), (4.12)

where x̂ = x − xs, xs is the location of a periodically repeated point source situated
in the pore interior, and the normal vector over I points into the cell.

In the absence of fluid motion, the second and fourth integrals on the right-hand
side of (4.12) vanish. Using the integral identity (4.6), we find that the third integral
is equal to the equilibrium liquid pressure p0, as expected.

To eliminate the undesirable integrals along I on the right-hand side of (4.12), we
decompose D and Σ into non-periodic components consisting of the first terms on
the right-hand sides of (4.3) and (4.10), and remaining periodic components denoted
by the superscript P. Taking advantage of the periodicity of the stress field and
rearranging, we derive the equivalent expression

pB = γ

∫
C

DP
i (x̂)ni(x)κ(x) dl(x)− µ

∫
C

ui(x)ΣP
ij (x̂)nj(x) dl(x)

+
1

2Ac

∫
C

x̂j[σji(x)ni(x) + pBnj(x)] dl(x) +
1

2Ac

∫
I

x̂jσji(x)ni(x) dl(x)

−µ
(
Q

Ac
+

∫
I

ui(x)Σij(x̂)nj(x) dl(x)

)
. (4.13)

Using the divergence theorem, we find that the third and fourth terms on the right-
hand side of (4.12) are equal to the mean pressure over the area of the unit cell,
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defined as

p̄ ≡ − 1

2Ac

∫
cell

σii dx dy, (4.14)

where we have set σij = −pBδij in the bubble interior. Moreover, because the structure
of the lattice is assumed to be preserved, the tangential velocity is periodic along facing
sides of the contour of the unit cell, whereas the normal velocity consists of a periodic
component and a non-periodic component equal to uP · n ≡ Un = −Q/LI , where LI
is the perimeter of I . Expression (4.13) then simplifies to

pB = γ

∫
C

DP
i (x̂)ni(x)κ(x) dl(x)− µ

∫
C

ui(x)ΣP
ij (x̂)nj(x) dl(x)

+ p̄− µ Q
Ac

(
1− Ac

LI

∫
I

ni(x)Σij(x̂)nj(x) dl(x)

)
. (4.15)

It can be shown that the term enclosed by the large parentheses on the right-hand
side of (4.15) is equal to 2, independent of the location of the point source.

When the bubble pressure pB and average pressure p̄ are required to be the same
as the equilibrium reference pressure p0 prevailing in the absence of fluid motion,
equation (4.15) provides us with the integral constraint

γ

∫
C

DP
i (x̂)ni(x)κ(x) dl(x)− µ

∫
C

ui(x)ΣP
ij (x̂)nj(x) dl(x)− 2µ

Q

Ac
= 0. (4.16)

Van de Vorst (1995, 1996) implemented the method described in the second paragraph
of § 2.3 using an essentially equivalent version of relation (4.16) as a constraint. In
his formulation, the integrals over I were retained and the velocity along the contour
of the unit cell was computed by solving an integral equation. The circles in figure 9
represent data read off figure 3 of van de Vorst (1995) for a square lattice with initial
liquid fraction 0.35, and the dotted lines represent results‘ obtained using the method
discussed in the last paragraph of § 4.1. The excellent agreement between the two
simulations corroborates the consistency and equivalence of the two approaches.

5. Discussion
We have discussed methods for computing the bubble pressure in Stokes flow for

three prototypical configurations. Other types of flow, including flow with multiple
bubbles and flow past doubly or triply periodic suspensions of bubbles, may be treated
by straightforward modifications of the basic formulation. The new methodology
allows the practical computation of the bubble pressure with arbitrary precision in
two-dimensional flow. Numerical error undermines the accuracy for three-dimensional
flow and requires the use of refined grids that inflate the cost of the computation.
These pragmatic constraints, however, are common in problems of three-dimensional
interfacial flow.

Boundary-integral methods for simulating the deformation and shrinkage of
constant-pressure compressible two-dimensional bubbles and pores in Stokes flow
were developed and implemented by Power (1992), van de Vorst (1993), and Primo,
Wrobel & Power (2000) for solitary configurations, and by van de Vorst (1995, 1996)
and Pozrikidis (2002a) for doubly periodic flow. Van de Vorst and Pozrikidis used the
direct formulation, whereas Power and Primo et al. used an indirect representation
consisting a point source situated inside each pore to account for changes in the
pore area and a single-layer Stokes potential whose density is computed by solving
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an integral equation. Our discussion in § 4 for doubly periodic flow suggests that the
method based on the potential dipole representation of the pressure is significantly
more efficient than that based on the application of the reciprocal theorem with a
point source.

The integral representations for the bubble pressure discussed in this paper can
be generalized to Navier–Stokes and non-Newtonian flow. For example, applying
the generalized reciprocal theorem for steady two-dimensional Newtonian flow with
the flow due to the point source as a test flow (e.g. Pozrikidis 1997), and treating the
inertial force as an effective body force, we find that the bubble pressure is given by
the integral representation (2.13) where the right-hand side also includes the following
integral computed over the domain of flow:

− 1

4π

∫ ∫
Flow

Pi(x̂)
∂σik

∂xk
(x̂) dA(x). (5.1)

In the case of Navier–Stokes flow, ∇ · σ = ρDu/Dt, where ρ is the density and D/Dt
is the material derivative. Note the first term on the left-hand side of (2.13) also arises
from (5.1) by setting ∇ · σ = γ

∫
C
δ2(x− x′)γ(x′)n(x′) dl(x′), where δ2(x− x′) is Dirac’s

delta function in the (x, y)-plane. The implementation of this formulation to study the
effect of fluid inertia on the pressure developing inside an incompressible bubble and
on the rate of expansion of a compressible bubble is currently under investigation.

This research was supported in part by a grant provided by the National Science
Foundation.

Appendix
To simulate the expansion or shrinkage of a doubly periodic lattice of bubbles

or pores, we compute the motion of the interfaces using the method of interfacial
dynamics for Stokes flow. As a preliminary, we introduce the doubly periodic Green’s
function of two-dimensional Stokes flow, denoted by G2D-2P

ij (x, x0), representing the ith
component of the velocity at the point x due to a lattice of point forces oriented along
the jth axis, where one of the point forces is located at the point x0. The geometry
of the point-force lattice corresponds to the instantaneous structure of the doubly
periodic suspension. The corresponding Green’s function for the stress is denoted by
T 2D-2P
ijk (x, x0). Expressions for these Green’s functions in terms of rapidly converging

Ewald sums have been derived by van de Vorst (1996) and have been restated in
adapted form by Pozrikidis (2001b, 2002a).

It is particularly significant to note that the velocity Green’s function, G2D-2P
ij (x, x0),

is periodic in the directions of the two lattice vectors, whereas the stress Green’s
function, T 2D-2P

ijk (x, x0), consists of a linear non-periodic component and a remaining
periodic component; the former expresses a linear pressure field necessary to balance
the point forces underlying the Green’s function. To emphasize this property, we
write

T 2D-2P
ijk (x, x0) = −δik 4π

Ac
(xj − x0j ) + T 2D-2P-P

ijk (x, x0), (A 1)

where the superscript 2D-2P -P denotes the periodic component.
Consider the lattice illustrated in figure 5, and select as a control area the region

occupied by the liquid in one unit cell. The boundary-integral formulation provides
us with an expression for the velocity at a point x0 located inside the control area in
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the integral form

uj(x0) = − 1

4πµ

∫
C,I

fi(x)G2D-2P
ij (x, x0) dl(x)

+
1

4π

∫
C,I

ui(x)T 2D-2P
ijk (x, x0)nk(x) dl(x), (A 2)

where I stands for the contour of the unit cell, and f ≡ σ · n is the boundary traction
(e.g. Pozrikidis 1992). Exploiting the periodicity of the stress field, the conforming
periodicity of the Green’s function for the velocity, and the opposite orientations of
the normal vector over facing sides of I , we find that, because of cancellations, the
single-layer potential expressed by the first integral on the right-hand side of (A 2)
over I vanishes.

Next, we note that, because the structure of the lattice is preserved, the tangential
velocity is periodic along facing sides of the contour of the unit cell, whereas the
normal velocity can be decomposed into a periodic component and a constant
non-periodic component component given by uP · n ≡ Un = −Q/LI , and LI is the
perimeter of I . Cancelling out the periodic contributions, enforcing the free-surface
condition and rearranging, we obtain

uj(x0) = − γ

4πµ

∫
C

κ(x) ni(x)G2D-2P
ij (x, x0) dl(x)

+
1

4π

∫
C

ui(x)T 2D-2P
ijk (x, x0)nk(x) dl(x)

− Q

2Ac

(
Ac

2πLI

∫
I

ni(x)T 2D-2P
ijk (x, x0)nk(x) dl(x)

)
. (A 3)

It can be shown that the term enclosed by the large parentheses on the right-hand
side of (A 3) is equal to x0j , yielding the simplified integral representation

uj(x0) = − γ

4πµ

∫
C

κ(x) ni(x)G2D-2P
ij (x, x0) dl(x)

+
1

4π

∫
C

ui(x)T 2D-2P
ijk (x, x0)nk(x) dl(x)− Q

2Ac
x0j . (A 4)

The physical interpretation of (A 4) becomes evident by decomposing the stress
tensor into its pressure and velocity gradient constituents, and expressing the pressure
Green’s function in terms of the doubly periodic point source, as shown in (4.11).
The result is

uj(x0) = − γ

4πµ

∫
C

κ(x) ni(x)G2D-2P
ij (x, x0) dl(x)

+

∫
C

Dj(x0 − x)uk(x)nk(x) dl(x)

+
1

4π

∫
C

ui(x)

(
∂G2D-2P

ij

∂xk
+
∂G2D-2P

kj

∂xi

)
(x− x0)nk(x) dl(x)

− 1

2Ac

∫
C

xjuk(x)nk(x) dl(x). (A 5)

The four integrals on the right-hand side represent, respectively, interfacial distri-
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butions of point forces, point sources, point-force dipoles, and a constant velocity
expressing global translation.

Taking now the limit of (A 4) as the point x0 approaches the free surface, and
expressing the limit of the double-layer potential in terms of its principal value, we
obtain an integral equation of the second kind for the interfacial velocity,

uj(x0) = − γ

2πµ

∫
C

κ(x)ni(x)G2D-2P
ij (x, x0) dl(x)

+
1

2π

∫ PV

C

ui(x)T 2D-2P
ijk (x, x0)nk(x) dl(x)− Q

Ac
x0j , (A 6)

where PV denotes the principal value of the double-layer integral. Solving this integral
equation allows us to advance the position of the interface.

The foregoing analysis may be modified to account for circumstances where the
geometry of the lattice changes in a specified way during the motion. In such cases, the
normal velocity along the contour of the unit cell can be decomposed into a periodic
and a non-periodic component determining the change in the lattice geometry. The
end result is the integral representation (A 4), where the last term on the right-hand
side is replaced by a non-isotropic linear function whose divergence is equal to −Q/Ac.
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